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The equations for large eddy simulation (LES) of turbulent flows
are derived by applying a ““filtering” operation to the Navier—Stokes
equations. LES of inhomogeneous turbulent flows requires the use
of filters with variable filter width. The use of such filters invalidates
the standard derivation of the basic equations for the filtered fields
since the filtering operation in general does not commute with the
operatton of differentiation. In this paper an alternate detinition
of the filtering operation based on the mapping function of the
nonuniform grid is introduced. It is shown that with this modified
definition the filtering and differentiation operations commute up
to an error which is second order in the filter width. it is also shown
that the commutation error can be expressed in terms of the filtered
field and its derivatives as an asymptotic series in the square of the
filter width. These resulis are then applied to the Navier—Stokes
equations to derive the basic equations satisfied by the filtered
fields. @ 1995 Academic Press, Inc.

1. INTRODUCTION

Application of the method of LES to a turbulent low consists
of three separate steps. First, a filtering operation is performed
on the Navier-Stokes equations to remove the small spatial
scales. The resulting eqnations that describe the space—time
evolution of the “*large eddies™ contain the subgrid scale (sgs)
stress tensor that describes the effect of the unresolved small
scales on the resolved scales. In principle, the sgs stress depends
on the precise definition of the filtering operation and the param-
eters characterizing it. The second step is the replacement of
the sgs stress (which is unknown, since it depends on the
unresolved scales) by a “‘model.”” The ‘‘model’” may be any
expression that can be calculated from the resolved scales and
may or may not contain some adjustable parameters. The final
step is the numerical simulation of the resulting “‘closed’” equa-
tions for the large scale fields on a grid smali enough o resolve

. the smallest of the large eddies, but still much larger than the
fine scale structures at the Kolmogorov length.

In this paper, we wili focus our attention on the first step,
that is, the derivation of the basic equations describing the
evolution of the large eddies of a turbulent inhomogeneous
flow. This should not be confused with issues such as finite
differencing errors or the best choice of computational grids
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which are part of the third stage mentioned above. The only
conncction between the derivation of the large eddy equations
presented in this paper and choice of grids in numerical simula-
tions is that the local grid spacing must be of the same order
as the local filter width to ensure that the grid is just fine enough
to resolve the filtered fields. In practice it is convenient to firs
find an appropriate computational grid and then define a filtering
operation consistent with it.

In dividing a turbulent flow field into “*large’” and *‘small”’
eddies one presumes that a cut-off length & can be sensibly
chosen such that all fluctuations on a scale larger than § are
““large eddies’” and the remainder constitute the “*small scale™
fluctuations. Typically, & would be a length scale characterizing
the smallest structures of interest in the flow. In an inhomoge-
neous flow, the *‘sensible choice’’ for & may vary significantly
over the flow domain. For example, in a wall-bounded turbulent
flow, most statistical averages of interest vary much more rap-
idly with position near the wall than far away from it. Further,
there are dynamically imporctant organized structures aear the
wall on a scale much smaller than the boundary layer thickness.
Therefore, the minimum size of eddies that need to be resolved
is smaller near the wall. In general, for the LES of inhomoge-
neous flows we must consider the width of the filtering kernel
g to be a function of position.

If a filtering operation with a nonuniform flter width is
performed on the Navier—Stokes equations, one does not in
general get the standard large eddy equations. The complication
is caused by the fact that a filtering operation with a nonuniform
filter width in general does not commute with the operation of
differentiation. The purpose of this paper is to address this
specific problem. In the next section it is shown that a variable
width filter can be derived from a given fixed-width filier by
means of a nonlinear mapping procedure, and this definition
is adopted for future work by virtue of its desirable properties,
discussed in the rest of this paper. It is shown in Section 3 that,
in addition to being intuitively appealing, the filtering operation
so defined has the property that the commutation error goes
to zero with the filter width, In Section 4 we show how the
commutation error is distributed over all possible wave num-
bers. In Section 3, we show how the lack of commutation



LARGE EDDY SIMULATION IN COMPLEX GEOMETRY 25

between the filtering and differentiation operations can be cor-
rected for at successive orders in the filter width, The extra
terms introduced in the large eddy equations as a result of these
corrections have intuitive physical interpretations which are
discussed in Section 6 with the help of a simple model equation.
The results of these investigations in one dimension are ex-
tended to general three-dimensional flows in Section 7. The
higher order corrections needed to account for the commutation
ervor raise the spatial order of the differential equations. There-
fore, additional boundary conditions are required in order to
uniquely determine the solution. This issue is discussed in
Section 8. The preceding ideas are brought together in Section 9
to derive the large eddy equations for a general inhomogeneous
turbulent flow. A perturbative method for computing the filtered
fields to any order is also presented. Conclusions are summa-
rized in Section 10.

2. NONUNIFORM FILTERING IN ONE SPACE
DIMENSION (DEFINITION)

Consider a field ¢{&) defined in the domain (—oc, +0), A
filtering operation with a constant filter width A is defined by [2]

o=l c(t=n
¢(§)—AJ_wG( A )qs(n)dn, @1

where (& is any function with domain (— 9, + ) and endowed
with the following properties:

i) G(—& = G(®
Gi)y [.G@®de=1

(ili) G(&) — 0as |¢| ~ o sufficiently fast so that all mo-
ments

| cwe g

(rn = 0) exist.
(iv)  G(£) 1s localized (in some suitably defined sense) in
(—4, +2).

Some examples of possible filter functions are the ‘‘top-
hat’’ filter,

1, if |£] <4,

G(§) = { 2.2)

0, otherwise,

and the ‘‘Gaussian’’ filter,

Gy = \/%BXP(—ZEZ)-

(2.3)

{For a discussion of the various types of filters used in LES,
see [1].)

In situations where the domain might be finite or semi-infinite
and a variable filter width is desirable, the definition (2.1) can
have many possible generalizations, For example, a generaliza-
tion of (2.1) when G is the top-hat filter might be

H(n)dy (2.4)

- 1 EHAL(D
O = E T @ e

where A, (£) and A_(£) are positive functions and A.(€) +
A_(£) is the effective filter width at location “*£’’. For a finite
or semi-infinite domain, A.(£) and A_(£) must go to zero at
the boundaries sufficiently rapidly so that (£ — A_(§), £ +
AL (&) is always in the domain of ¢. It may be shown {5] that
with the definition (2.4),

d$ 43 _ (@& + A(8) <

d¢  dg AH + AL
1 dA,
- _(A+ A [¢(§+ A+)d_g (2.5)
dA_
+ $(E— A) d_é]
Thus,
a3\ 3
(dg)?éd.f' (2.6)

One would like to believe that the right-hand side of (2.5)
would be small for some reasonable class of nonuniform filters
but this has never been conclusively demonstrated. This lack
of commutativity between filtering and differentiation causes
every spatial derivative operator in the Navier—Stokes equations
10 generate terms that cannot be expressed solely in terms of
the filtered fields. Therefore, a *‘closure problem™” is introduced
not only for the nonlinear terms but for the linear terms as
well. To remedy this situation we first propose an alternate
definition for the filtering operation that is more general than
(2.4).

Let ¢ be some field defined in a finite or infinite domain [«,
b]. Any nonuniform grid in the domain ¢ = x = b can be
mapped to a uniform grid of spacing A in the domain [—o,
+oe] by means of some mapping function

£=f(x). (2.7

Here f(x) is a monotonic differentiable function such that

fla) = —c°, (2.8)
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FIG. 1. The space x, with variable filter width &(x), is shown mapped

into a space £ with constant filter width A, by the ‘‘tan-hyperbolic map™
f(x) = tanh™'x.

fb) = +oo. 29

The nonuniform grid spacing 8(x) is clearly given by

A
8(x) 700 (2.10)
(see Fig. 1). Clearly, if a {or b) is finite, (2.8)-(2.9} require
f'(a) {or £'(b)) to be infinite so that &(a) (or (b)) = (. Thus,
the filtering kernel becomes a Dirac delta function at finite
boundaries.

The filtering operation is defined as follows. Given an arbi-
trary function (x) we first make a change of variables to £ to
obtain the new function ¢(&) = (f71(£)). The function H(£)
is then filtered using the usual definition (2.1) appropriate for
filtering on a uniform grid. Finally, we transform back to the
variable x. Thus,

Plx)=P(&) = %f: G (f_(ﬁ‘rﬂ) d(mdny Q.11

or, on using (2.7), we have

— ] b —_— )
B =2 16 (122D yipra @i

Equation (2.11) or, equivalently, (2.12) is the definition we
shall adopt for the filtering operation with a nonuniform filter
width. For reasons that will become apparent in the next section,
we will call this the Second-Order Commuting Filter (SOCF),
It should be noted that the definiton (2.4) used by Moin er al.
is quite different from what one would get on substituting the
expression (2.2) for the top-hat filter into (2.12).

ExampLE. In channel flow one often uses the ‘‘tanhyper-
bolic grid’” [3],
F(x) =tanhx, (2.13)

where +1 = x = —1. (x = =1 corresponds to the channel
walls.) From Eq. (2.12), the filtering operation is defined as

70 = [ Gy ay, 2.14)
where
- 1 -
Gy =56 (f(—x)Aﬂ)f'(y) @.15)

with f(x) = tanh~'x. The function G(x, y) is plotted in Fig.
2A when G is a top-hat filter and in Fig. 2B when G is a
Gaussian filter. If the approximations f(x} — f(y) = f'(x)
{x — y)and f'(y) = f'(x) for ¥ near x are used in (2.15), we
have, on using (2.10),
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FIG. 2. The shape of the filter function &G (a) when G is a top-hat filter
and (b) when G is a Gaussian filter.
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x=y

Gx, y) == B )G ( 6(x)) (2.16)
Thus, as a first approximation, the filtering kernel G contracts
in a self-similar manner on approaching a finite boundary (see
Figs. 2A and 2B). However, the exact formula (2.15) has an
additional higher order effect that causes the filter function G
to become asymmetric near the wall, giving more weight to
points nearer the wall than further from it. The effect is most
clearly seen in Fig. ZA.

3. CALCULATION OF THE COMMUTATION ERROR

On differentiating Eq. (2.12) with respect to x and performing
an integration by parts, we obtain

dy_ o], (fx)—f) b
A [G( A )*“ )]”
1 Lrg (f(x) f(y)) OV .

By virtue of Egs. (2.8)—(2.9) and the condition G(*x =) = 0,
the boundary term vanishes. (Since i is a physical field, we
assume that it remains bounded at the domain boundaries.)
Thus, we have

G.1)

L[ D yr o
e
L,

X[l f’(y)] ’

It is convenient to introduce the new variable ¢ such that y
is expressed implicitly in terms of ¢ through the equation

flyy=f(x) + AL (3.3)

Equation (3.3) can be inverted by expressing y in a power series

y=yld) + Ay) + Ayl ) + - (3.4)
On substituting (3.4) in (3.3) and equating like powers of A,
one obtains the expansion

AL _AY

T & (3.5

y=x-+

{Note. When the argument of any function is omitted we imply
that the function is evaluated at *“x™".)

In terms of £, Eq. (3.2) may be written as

f()]dg

491 = [ GOw () [ (3.6)

'y

where y is given by (3.5) (the limits of integration are obtained
on using (2.8) and (2.9) in (3.3)). On expanding each of the
factors in the integrand of (3.6) in Taylor series in A and
collecting terms of the same order, we have

QL) = c A+ AT+ 3.7)
where
o=k [T G8)
and
SULYRILY SN [ pog . 39)

Since G({) is symmetric, ¢, = 0. Thus, the commutation error
Gy ~ 0.

In an LES the grid spacing is approximately equal to the
*“filter width’* which is of order A. If a second-order numerical
scheme is used to represent the derivatives, the finite-differenc-
ing error is then of the same order as the error due to the
lack of commutativity of the differentiation and the filtering
operations. Therefore, in an LES of an inhomogeneous turbulent
flow using a second-order finite differencing scheme, the filter-
ing operation can be considered to commute with the differenti-
ation operation to within the accuracy of the numerical approxi-
mation.

4. SPECTRAL DISTRIBUTION OF THE
COMMUTATION ERROR

Let us substitute

= i explikx) (4.1
and {3.5) in (3.6). Then,
L[ f'x)
w]:zwj_mcm[h ; , ]
flix+ALf + ) “2)

X exp (u‘cf—fT . ) df.

On expanding the integrand of (4.2) in & power series in A,
we have
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BT g amy + AF k) + - -

(4.3)
¥
where F,, %, ... contain A only in the combination kA.
Now A < | but kA may be as large as order one. Thus,
A <€ kA so that we may neglect all but the first term in (4.3)
to obtain

(—‘gl[pﬂ ~ Fo(kD), (4.4)

On evaluating %,(kA) from (4.2) we have

€Yl _ . p L (kA)
o ikA Lo (2 4.5
v R @)
where % is defined by
F() = [ 7 (G explixd) dt. 4.6)

Equation (4.5} can also be written as

€Wl 52
v zké(a) F(k8),

(4.7
where & is the local filter width as defined in (2.10). On ex-
panding the exponential in {4.6) in a Taylor series, we see, by
virtue of G({) being symmetric, that % (k8) ~ k& so that |G [}/
th| ~ (k&Y as shown in the last section.

Comparison with finite differencing errors is facilitated if
the commutation error is expressed as a *‘modified wave-num-
ber.”” If €[] were zero, we will have for the function (4.1) that

<
1

= ikt = ikif. (4.8)

&

Therefore, if- we define a modified wave-number &’ by

<

= ik"}, 4.9

S|

then the departure of k' from & is a measure of the commutation
error. On making the change of variable (3.3) in (2.12), we
obtain

¥ = [ 6w (4.10)

On substituting (4.1) in (4.10) and on using the definition (4.9},
we obtain

i I G expliky(x, D)oy (x, 0fox) df
<= , (@1

J12 G expliky(x, ) d¢

where y has been expressed as a function of { by inverting
{3.3) for each fixed value of x. Equation (4. 11} is an exact result.
A simplified asymptotic form is abtained upon substituting the
expansion (3.5) in (4.11) and dropping all terms such as A(kA),
A*(kA), ..., since it was shown above that A <€ kA. Thus,

I77 (G(Q) explik ALIf'y dg
Gy explik gl de

kl f"
oAl
k ! f?

(4.12)

Since G({) is a symmeiric function, (4.12) simplifies to

K L TG sink ALl dg
=1 -iAS T ENCRE)
k I 77 G(o costk ALIf) di

ExampLE. Let us consider the top-hat filter defined by (2.2)

together with the tan-typerbolic map f(x) = tanh™'x. For this
map, Eq. (3.3) can be inverted to give

~ x+tanh A¢

¥ =1+ xtanh AL (4.14)

On substituting (4.14) in (4.11), we obtain

I exp(ikn)G(OI(1 — tanh? AD/(1 + x tanh AZ))
JT7 expliky)G(D) d¢

>

K
k
(4.15)

with y given by (4.14). As an illustrative example we consider
a channel whose walls are at x = 0 and x = 27 with 17 grid
points in the spanwise direction. Thus, A = 27/16. The integral
(4.15) can be evaluated numerically. The result is shown in
Fig. 3. The modified wavenumber for the second-order central
difference scheme is given by

k' sin(kd)

k ké

(4.16)

Equation (4.16) is also plotted in Fig. 3 for comparison. The
asymptotic formula (4.13) can be evaluated analytically in the
case of the tan-hyperbolic map and top-hat filter. A straightfor-
ward computation gives

2ix ké ké
"=k + phcdi ] — .
Kok (l—xz)[Zcm(Z) 1]

(4.17)
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FIG. 3. (a) The real (left) and imaginary (right) parts of the comemutation error (solid line) compared to the central differencing error (dotted line). The
symbols “*X*" are the result of using the approximate formula (4.17), Here A = 27/16, x = () (channel center), and the maximum wavenumber is #/& where
& is the local fitter width. (b) Same as (a) for x = 0.95 (close to channel wall). (c) Same as (a) for x = —0.95 (close to channel wall).

Equation (4.17) is also shown in Fig. 3. The agreement of the
asyimptotic result {4.17) with the exact result (4.15) is seen to

be very good.

The asymptotic formula (4.13) can be written in the following

convenient form:

(4.18)

kl = (%) F(ko), (4.19)
where & is the local filter width given by (2.10),
[I "7 LG sin(x{) dg:]
Fxy=x|=5 , (4.20)
J. Gy cosxdy di
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and the suffixes R and [ denote real and imaginary parts respec-
tively. Thus, to a very good approximation, the commutation
error is seen to be purely dissipative in nature, in contrast to the
central differencing error which is dispersive. The commutation
error vanishes in regions where 6’ = 0 {such as at the center
of a channel). From the example above it is clear that for the
top-hat filter,

ko7 | (ko)

oo (4
12 7 720 #2h

—1-K0 (K8 -
Fiks)=1-7 t(z)

A simple calculation shows that, for the Gaussian filter (2.3),

(@.22)

5. HIGHER ORDER CORRECTIONS TO THE
COMMUTATION ERROR

We have shown in the previous section that G[if] = rF(kA)
and Fy(kAy ~ (kAY at leading order in kA. In this section we
shall attempt to approximate the commutation error €[] by
an expression involving ¥ and its derivatives such that the
residual is of order (kA)*. The procedure can be readily general-
ized to represent ¥ (x) in terms of ¢'(x) and higher derivatives
of y(x) such that the error in the approximation is at most of
order (kA)*™ where m is any positive integer.

We have, upon expanding the exponential in (4.6) and noting
that G({) is a symmetric function,

+eo ix? [+
#0)=ix [ vowyar- 5 [T e+ 60

Substitution of (5.1) in (4.5) gives

Gl = —kAY 2 L ] oo ovay. 62)
From (4.10),
- wx) = [ GOY (x + ?—g + ) dg. (5.3)

On substituting ¢ = ¢, exp(ikx} in (5.3) and differentiating
twice with respect to x we have

KAy

2f' YTy 5.4

Y(x) = —k* [1 + O(kA)“]

where
= ["rewa (55)

and A <€ kA has been assumed. Equation (5.4) implies that

—k3p = " (x) + O(kAY. (5.6
On substituting (5.6) in (5.2) we get
Gyl = a Jf— AT (x) + OGAY. 5.7)
Thus,
a_db [, ‘
= ta o -A d + O(kA), (5.8)

The procedure can be continued to extend the accuracy of the
representation to any order in kA. Equation (5.8) can also be
written in terms of the local grid spacing 8(x) as follows:

d_di_ (84
dx  dx “52(3)d2+0(k5)4

(5.9
Equation (5.9) was established only for the function (4.1). How-
ever, it is clearly valid for any linear superposition of functions
of the type (4.1), that is, any function that admits a Fourier repre-
sentation.

6. PHYSICAL INTERPRETATION OF THE HIGHER
ORDER TERMS

It was shown in the last section that the application of the
filtering operation to a differential equation generates higher
spatial derivatives in the equation for the filtered field. What
is the physical meaning of these higher order terms? In this
section we address this issue with the help of a simple example.

Let us consider the one-dimensional wave equation

au
ar ax =0, 6.1

in the domain (—e0, +o0), with the initial condition
ul(x, 0) = up(x). (6.2)

On applying the filtering operation {2.12) to Eq. (6.1) and on
using (5.9) we have

du a*u

o 63
az ax ax? 63
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where

a2
v=ad (6) {6.4)
The coefficient » is small so that only the short wavelengths
are significantly affected by the dissipation term on the right-
hand side of (6.3). For the sake of definiteness, let us assume
as an example the situation where the local filter width & varies
with position as

5= 81+ brx, (6.5)

where b and &, are positive constants. Equation (6.5) clearly
cannot be valid over the entire domain since the quantity under
the square root becomes negative for large negative values of
x. However, we will consider the initial waveform to be locai-
ized on the positive side of the x-axis and, since the wave
described by (6.1) propagates from left to right, the values of
S(x) for large negative x will be irrelevant. (One can for example
assume 8(x) to be given by (6.5) for large positive x and assume
8(x) to asymptotically approach &, for large negative x without
affecting the validity of the analysis that follows.) On substitut-
ing (6.5) in (6.4), we see that for this choice of 8(x), v =
abdi/2 is position independent. Therefore, Eq. (6.3) can be
readily solved:

ann = |17 Avereen gk (6.6)
where
___1_ te ~ikx
A= f " T d, 6.7)

If the initial waveform is Gaussian,

. 2
_(x_x@], 65)

2
20’0

uy(x) = 1 ex[
LYt

then a straightforward evaluation of the integrals in (6.6) and
(6.7) gives

_ _ 1 _(.x - X0 — f)z
u(x, p) = a',\/2_:rr exp l: —~—-—--—20% ] 6.9

where
o= Vol + 2t (6.10)

Thus, even though u itself propagates from left to right un-
changed in form, ¥ slowly spreads as it propagates.

Be)

u(z,t) or Wi, 1}

FIG. 4. A schematic diagram representing the spreading of a Gaussian
wavepacket due to increasing filter width. The solid line is u(x, £) and the
dotted line is @ (x, f).

The physical reason for this result is apparent from Fig. 4.
The filtering operation ‘‘smears’’ the field u(x, ) by an amount
that increases with the filter width. As the pulse travels to the
right, it encounters ever-increasing filter widths and conse-
quently spreads with time. The validity of this interpretation
can be checked by directly computing the ‘‘true field” u(x, t)
at time t and filtering it with the local filter function. We
will consider G to be the Gaussian filter (2.3). Then to a first
approximation, (s (see Section 2) is a Gaussian (see Eq. (2.16))
with standard deviation given by half the local filter width
S(xp)/2 = (V1 + bxy)/2. Let us consider an initial field

_ 1 _(x — x)
ie(x) = a*\/z_nexp [ ———20_% ] 6.11}

On recalling that the convolution of two Gaussians of means
w and p, and standard deviations o, and o, is again a Gaussian
with mean u; + u, and standard deviation Voi + o, we
deduce that u{x, 0) is a Gaussian with mean at x = x; and
standard deviation

oy = \/0-3 + % 531 + bxy). (6.12)

The solution of the wave equation (6.1) with (6.11) as initial
condition is

f =t [_(i;x@_iﬂf] (6.13)
u(x, 70', \/z_n_.exp 307 . X

Once again, Gatx =x,+ ¢t may be approximated by a Gaussian
with standard deviation given by half the local filter width,
which in this case is d(x; + £)/2 = (6, V' 1 + bxy + bt)/2. There-
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fore, u(x, t} is a Gaussian with mean at x = x, + ¢ and stan-
dard deviation

o = ‘/az+§ag(1 + bxy) +%65bt. (6.14)

On using (6.12) in (6.14) and noting that for the Gaussian filter
o = 1 (a is the square of the standard deviation) so that » =
b8ii8, we deduce that

o=Veal+ 2.

Thus, we recover precisely the same result that was obtained
by directly solving Eq. (6.3) for the filtered field.

7. GENERALIZATION TO THREE SPACE DIMENSIONS

1.1. Defining the Filter

Let us consider curvilinear grids defined by the coordinate
planes

H\{(x,, x4, x;) = constant, (7.1)
Hi(x,, x4, X3} = constant, (7.2)
Hi(x,, x5, x3) = constant, 7.3

where x;, x,, and x; are rectilinear coordinates in physical space.
Let us alsc introduce a new ‘‘computational space’” X, X:X;
through the mapping

X = Hl(x;,xz,xs), (7.4)
X2 = Hl(xl L xlsx:'))a (75)
Xy = Hi{x:, x5, %3), (7.6)

which maps the physical space domain into R® meshed with a
uniform grid of spacing A. We will first define a filtering opera-
tion that is appropriate for use with this grid. Next we give a
method of computing the commutation errors in terms of the
resolved fields to any given order in accuracy.

Following the usual procedure (see Section 2), we first trans-
form the field to be filtered, ¢«(x), from the physical to the
“‘computational’” space

Y(x) — ¢(h(X)),

where h is the inverse of H. Next, we filter the field in computa-
tional space following the usual definition of filtering for a
vniform grid,

1 (4 X, — X! ) ,
Mh(x))_)PJHG( A )tlf(h(X NdX'.

Here G is the one-dimensional filter function as defined in
Section 2. Finally, we transform back to physical space to get
the filtered field,

H(x) —

i 1 g ' '
=56 (—A—) WX EX'. (7T)

Equation (7.7) may also be written as
3 — v
=116 (@E}i@) YY), (1.8)

where J(x) is the Jacobian of the transformation (7.4)—(7.6).

7.2. The Commutation Error at Lowest Order

Equation (7.7) gives, on differentiation,

- b1 e
axk A3 A A

3 .
XHG(H(X) ) H,(0W(h(X') &°X.

i#f

(7.9

Throughout this paper we will be following tensor notation
in which a comma followed by one or more indices denotes
differentiation with respect to the corresponding variables. For
example, F;; = 0F/dx;. Unless otherwise stated, the summation
convention is implied. From (7.9) we obtain, after using

1., H,-(x)—X;)= 3 (Hj(x)—
AG( A ax; S\ A

and integration by parts and noting that the boundary terms
vanish (since any finite boundary is mapped to infinity by H),

X!
J) (7.10)

H(X) ’ '
-5/ HG( ) Hiu(8) 5 ) 4

(91} =1

P (H(x) - X!
- EAIG J H G (—(%P) H (X, (XD @iy d°X
(7.11)

where (0,,¢/)nx, denotes the function 9,4 evaluated at h(X"}).
We define the commutation error as

ck[w(x)k( “’) (g—f)

where £ = 1, 2, or 3. Therefore, on using (7.7) and (7.11),

(7.12)
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L (Hx) = X!
ciwor = 5 [ Tl 6 (12X )
=1

(7.13)
X (At Ben — H; o (WX, (X)) 47X
If we introduce the new variable
X' -X
Z="7%" (7.14)
then (7.13) becomes
3
Cutg) = [ TT G@X@utbrcsaz Ben
= (7.15)
— H, (b(X)h, (X + AZ)] d°Z.
On using a Taylor series expansion in A we obtain
B (X + AZ) = b, ,(X) + AZh, ;XD + -0 (7.16)
Since h is the inverse of H, it follows that
hm,j(H(x))Hj,&(x) = h’m,)(x)H)'&(h(x)) = 5,-,,;(.. (7.17)

Using (7.16) and (7.17) we derive

H (h(X)hy, ;(X + AZ) = b, j(XOH; :(W(X))
+ AZ R (XH (X)) + -+
= B + AZiby y (X)H e (W(X)) + -+ -

(7.18)
Similarly,
(Ontnxrazy = (Ontfnpy + Azlhp.l(x)(am')b)h(x) +--
(7.19)
On substituting (7.18) and (7.19) in (7.15) we obtain
Cilyl = —Ahy  (HX)H;  (X)(3, )
(7.20)

3
x [Tl 6@)zaz + o4,
i=1

Now, by symmetry of the filter G,

3
G(Z)Z, d*Z =0, {7.21)
i=1

Therefore,
C.[yf] ~ O(AY. (7.22)

7.3. Higher Order Corrections

Following the approach in Section 5, we consider the wave

(x) = yh expl(ik - x). (7.23)
On substituting (7.23) in (7.15), we obtain
3 .
G191 = [ TT 6(2)iky i exp(ik - (X + AZ)
i=1 (7.24)

X [8n — Hip(h(X)h,, ;(X + AZ)) d°Z.

On expanding k., ;(X + AZ) in a Taylor series in A, we obtain
from (7.24)

Cily] = FP(kA)Y + AFPKA) + - - (7.25)

where FP(kA), F(kA), -+ are functions which contain A
only in the combination kA. The first term is of particular
interest to us and is expressed (on using (7.18)) as

FPKA) = —iky Ay o COH; (MX)Y(h(X)F,  (7.26)

where
3
4= f I GZ)Z, expli Ak, 1, (X)Z) L. (7.27)
=1

Since we have A < |k|A (see Section 5), we may drop every
term in (7.25) except the first. Thus, C,[¢] =~ FF(kA).

C,[¢] can be obtained up to any order in |k|A by expanding
the exponential in (7.27) in powers of |k|A. Let vs explicitly
evaluate the lowest nonzero term by way of example. On ex-
panding the exponential in (7.27) in a Taylor series,

3
$, =~ iAo, X) [ [] 62)2,2.4Z
i=1

(7.28)
= i Ak, b, ,(X).
Here « is given by (5.5) and we have used
3
(62,242 = as,. (7.29)
=1
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Thus,

Clip) = ke, jo (X o (X)H, (XD (h(X)) + O([k|A).
(7.30)

The last and final step is to express knk¢r(h(X)) in terms of
some derivatives of ¢« In order to do this we note that Eq. (7.7)
may be written as

3
¥ = [ TI GZohnX + AZ) 2

3 (7.31)
= f [1 G(Zyw(h(X)) exp(ik, Ah,, (X)Z,) d*Z
i=1

+ Afi(kA) + - -,

where fi(kA)is some function containing A only in the combina-
tion kA and likewise for the remaining terms. Thus,
$(x) = Y0 J(kA) (7.32)

where

3
J(kA) = f 11 G(Z) expti Ak, b, (X)Z,) d*Z. (7.33)
i=1

—kkth, we
—kakr + O(K|AY, If we substitute

On noting that J(kA) = 1 + O([k|A)? and ¢, =
have, from (7.32), ¢/, =
this 1 (7.30), we obtain

62
Cl] = —adTy, o g’x + O(k|AY, (7.34)
where
Ty = M s (HOOW, (H(X)MH, ((X). (7.35)

Using (7.26) together with (7.32), an expression for C[¢] in
terms of yr can be written down to any order in A. Thus,

Al = (8 — @ AT, 02, + -+ (7.36)

8. THE QUESTION OF BOUNDARY CONDITIONS

We have shown that the effect of a nonuniform filter is
accounted for in the equation for the filtered field through the
introduction of higher order spatial derivatives. This implies
that additional boundary conditions are required to uniquely
determine the solution. In this section we show how such addi-
tional boundary conditions can be obtained. The implementa-
tion of even the “‘usual’’ boundary conditions in the Navier—

Stokes equations often involves subtle numerical difficulties
(see e.g. [4]). Therefore, the necessity of having to take into
account these additional boundary conditions might be quite
undesirable from the point of view of practical computations.
It is shown that if the modified equations are solved perturba-
tively by asymptotic expansion with respect to the small param-
eter A%, the equations that need to be solved at any given step
in the procedure are of the same order in spatial derivatives as
the original system. Thus, the perturbative solution does not
require the specification of additional boundary conditions. The
extra boundary conditions required for the full solution are
automatically satisfied when a certain form is assumed for the
perturbative solution. The issues are clearly understood in the
context of a simple example problem.
Let us constder the equation

du
T 0 (8.1)
in [0, + %) with the boundary condition
w0 =1. (8.2)

The exact solution is clearly u(x) = 1, which implies u(x) =
1. On applying the filtering operation (2.12) and using (5.8)
we have

" .,d%n  du
o Al—— 4 — =1, 8.3
af” dx*  dx (8.3)
Since ¥ — u at the wall, (8.2) implies
w = 1. (8.4)

By definition, f must be singular at the origin. If the singularity
is logarithmic, then f"/f'% ~ —x. However, if f ~ —x™7 (p >
0) then f"/f"* ~ —x¥*' In either case, f/f'* — 0 at the
boundary (as it must, since the filtering kernel G(x, y) —
8(x — y) at the boundary, so that the filtered and unfiltered
fields become identical in this limit and hence the extra terms
must drop out). Therefore, if we require that u together with
its derivatives should remain finite at the boundary, then we
have from (8.3) that
w(=0 (8.5)

Equation (8.5) is the required additional boundary conditicn.
The solution of (8.3) subject to the boundary conditions (8.4)
and (8.3) is clearly u(x) = 1. Thus, the exact solution is re-
covered.

The sclution can also be obtained by treating the term with
coefficient A? as a small perturbation. Thus, on substituting
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¥ = mlx) + A%{x) + A0 + - (8.6)
in {8.3) and (8.4), one obtains at lowest order

e 0 (8.7
and
uy(0) = 1. (8.8)
Therefore,
o(x) = 1. (8.9)

At the next order, we have from (8.3} and (8.4)

% = —a}c—:% (8.10)
and
(0 =0 (8.11)
Equations (8.9), (8.10) and (8.11) imply
wx) =0. (8.12)

It is not meaningful to consider any higher order terms since
(8.3) itself is only accurate to order A% Therefore, the solution
obtained by the perturbation method is

ux) =1+ O(A*. (8.13)
If all the higher order terms were included in (8.3), the perturba-
tion method would give #(x) = 1 and k(x) = 0 for all n =
1. Hence, the exact solution is recovered. It is important to
note that, in the perturbative method, one solves a first order
equation at any given step in the process, so that additional
boundary conditions are not required. However, (8.5) is auto-
matically satisfied by the perturbative solution. The reason is
that (8.5) follows from (8.3) on assuming that the second deriva-
tive of @ is finite at the boundary and this condition has been
implicitly assumed in writing (8.10).

9. LES OF INHOMOGENEQUS TURBULENT
FLOWS—THE BASIC EQUATIONS

Incompressible Navier-Stokes turbulence is described by the
basic equations

&y + 9;(ua) = —3;p + Re™ oy 9.1)
and

3= 0. 9.2)

On taking the divergence of (9.1} and using (9.2) we obtain

Vip = — 0k (ua). 9.3)
In numerical computations (9.1) is usually solved in conjunction
with (9.3) and thereby (9.2) is automatically satisfied, provided
the initial velocity field is divergence free, We will now derive
the corresponding equations that are satisfied by the filtered
fields &; and p. In order to do this, we apply the filtering operation
(7.8) on both sides of Egs. (9.1) and (9.2) and make use of
{7.36) to take the filtering operation inside the spatial differenti-
ation operator.

It is however convenient to first introduce the operators
(where i = 1, 2, 3) such that

I =B 9.4
From (7.36), %; has the expansion
@j = 6[ - aAZF;jkaﬁ + - (9-5)

It follows from (9.4) that the operators @, must commute with
each other; that is,
[gbj, @j] = @,‘@j - @j@i =0. (96)

To see that this must be true, we simply use (9.4) on both sides
of the identity

Py _

axdx  Axax;

(9.7)

Then the left-hand side becomes %, % ap, the right-hand side
becomes 9,94, and hence (9.6) must be true. In order for the
expansion (9.5} to be consistent with (9.6), we must have

(D, DF] ~ A%, (9.8)
where
DF =1 a6} 9.9
Indeed, from (9.5) and (9.6),
(D, B]= (D, DF]+ OA) =0, (9.10)

and hence (9.8) must be true. It can be directly verified that
the expression for I'y, given by (7.35) is indeed consistent with
(9.10), and the proof of this is presented in the Appendix.

On applying the filtering operation (% — ) to both sides
of (9.1} and introducing the sgs stress tensor
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(9.11)
we have

a,ﬁ,- + @J(ﬁ,ﬁj) = —%15 - QDJ-T,-_,- + Re_lgbk@kﬁ,-. (9.12)
Note that in deriving (9.12) use has been made of the fact
that the operators &; commute with each other. Similarly, on
applying the filtering operation to (9.2), we derive
@iﬁ; = (. (9.13)
The equation for the filtered pressure can be derived either by
applying the operator %; to (9.12) and using (9.13) or by
applying the filtering operation directly to (9.3). It is readily
verified that both methods give the same equation
@k@kﬁ = _@j@j(ﬁ[ﬁj + 'T,I) (9.14)
for computing the pressure. If some sgs model 7; = 7;[u] is
used in (9.12)—(9.14) and suitable boundary conditions are
assumed, the LES fields p and %, can be uniquely determined.
Equations (9.12) and (9.13) are higher order in spatial deriva-
tives than the incompressible Navier—Stokes equations and
therefore require the specification of additional boundary condi-
tions. These can be derived in the manner explained in Section 8.
Thus, if only corrections to order A? are retained, the additional
boundary conditions are
a,ﬁ,‘ + BJ(EIEJ) = d; i Tij + Re" akku,

—&;p — (9.15)

and
(9.16)

at the boundary.

The necessity of specifying additional boundary conditions
can be avoided (see Section 8) if (9.12)-(9.13) are solved
perturbatively by treating A? as a small parameter. As an exam-
ple, suppose that we must solve the LES equations in some
domain with the condition that the velocities must vanish on
some surface &. Then, we have

wx=F)=0=5x=9). ©.17)

On expanding u; and p in asymptotic series
p=pY+ AP+ (9.18)
w=u"+ A+ .-, (9.19)

and on substituting (9.18) and (9.19) in (9.12), (9.13), and
(9.17), we have at the lowest order

a,u® + 0,(uu™ = —a,p0 — 9,7 + Re ' 37 ul",  (9.20)
aa0 =0, 9.21)

and
FOx = F) =0 (9.22)

Here 7, vi), - -+ are the expansion coefficients obtained on
substituting (9.19) into the sgs model 7;[u]. At the next order
in A? (9.12) gives

o.a" + 8;(u®u™ + a,(uPu® + 9,p"
(9.23)
-+ ajTﬂ) - Re"l 6“55” = af,-,
where
Fi= T 0 aPUY + T 02, P + Ty 97
! " @24

—Re Tz 82,00 — 2Re Ty 8 it

is a “‘forcing term’’ that is known from the solutlon at the
previous order. Similarly, Eq. (9.13) gives

dull =0 (9.25)
and Eq. (9.17) implies that
Mx=9)=0 (9.260)

It should be noted that any basic Navier—Stokes numerical
code can be used to solve (9.20)-(9.26) with no modification
to its basic structure. The evaluation of the pressure and velocity
fields are done twice instead of once every time step. First
(9.20)—-(9.22) are solved and the zeroth order fields are stored.
Next, this information is used to solve (9.23)-(9.26) to deter-
mine the leading order correction.

The increase in numerical effort will be mainly determined
by the number of nonzero components in the tensor F;, which
is a meausre of the complexity of the shape of the flow domain.
In the direct method, a single evaluation is sufficient but the
additional boundary conditions (9.15)—(9.16) must be explic-
itly enforced.

10. CONCLUSIONS

The method of large-eddy simulation is supposed to compute
a filtered version of the true velocity field in a turbulent flow.
In a flow with boundaries, the filter width must vary with
position to reflect the changing length scales of the characteristic
structures in the flow. A variable filter width invalidates the
standard derivation of the large-eddy equations which were



LARGE EDDY SIMULATION IN COMPLEX GEOMETRY 37

originally written down for a situation where the filter width
is constant.

In this paper, the LES equations were derived for a variable
filter width appropriate for general complex geometry flows.
The main difficulty that arises in such a derivation is due to
the fact that the operations of differentiation and filtering do
not commute. In order to address this ditficulty a new definition
of the filtering operation which we call a second-order commut-
ing filter (SOCF) was introduced. Using this definition it was
shown that the commutation error is of order A? where A is
the nondimensional grid spacing (that is, the ratio of the grid
spacing in physical units and a characteristic length of the
flow domain).

The above theory is applied to the Navier—Stokes equations
and it is shown that the use of the standard large-eddy equations
introduces an error that is no more than the error introduced
by a second-order finite difference scheme used to discretize
the LES equations. Such an error, however, might not be accept-
able if one is using a higher order differencing scheme or
a pseudo-spectral method. An asymptotic expansion for the
commutation error was developed so that the commutation error.
can be approximated to any degree of accuracy in terms of the
filtered fields. Thus, any number of higher order corrections
can be added to the standard [LES equations to ensure that the
commutation error does not exceed the discretization error in
a numerical simulation. The inclusion of such higher derivatives
increases the spatial order of the differential equations so that
additional boundary conditions are needed to obtain a unique
solution. The required additional boundary conditions can be
derived from the requirement that the filtered and unfiltered
fields must become identical infinitesimally close to the bound-
ary. Alternatively, one may take advantage of the smallness of
the parameter A’ and obtain a perturbative solution. In this
method additional boundary conditions need not be enforced
since at any given order in the perturbation series the differential
equations to be solved have the same spatial order as the Na-
vier—Stokes equations.

APPENDIX

It is shown in the text that in order for the asymptotic expan-
sion (7.36) to be consistent with (9.6), we must have [20F, D* ]
~ A*, Here we explicitly show that this consistency requirement
is indeed satisfied.

On using the definition (9.9) we see that

DFDF =k — ald (U, d54)

— AT, 83,4 + O(AY (A1)

= 0ftf — BTy 050 h — ATy, 8,4
— @A, dimth + O(A).

On interchanging the indices j and & the first term on the right-
hand side of (A.1) remains unchanged, whereas the third and
fourth terms transform into each other. Therefore, we have
(B, DF] = —ad (Tyy; — Dpgi) 82, + O(A%Y. (A2)
We will now show that I'y,,, — T'j,, is antisymmetric with
respect to the indices p and g. This will complete the proof
since 9%, in (A.2) is symmetric with respect to p and ¢ and
hence the first term on the right-hand side of (A.2) will vanish
on summing over p and q.
We obtain, upon differentiating (7.35) and vsing the chain
rule, '

rijk,l = hj,mnuHM.lhk.nHm.i + hj.mnhk,n#H#JHm,f
+ hjmn hﬂ',nHm,ih

(A.3)

where it is understood that all H’s are evaluated at x while all
h's are evaluated at H(x). On exchanging the indices i and ,
the first term on the right of (A.3) becomes A, H,, 1y Hei =
B o Ho i n ot = Rjmee Hy i o H s which is the original expres-
sion. Thus, the first term is symmetric with respect to the indices
f and . The last term is obviously symmetric with respect to i
and [. Therefore, the second term on the right of (A.3) is the
only term that contributes to I'y, — I'yy;, and we have

Fijk,i - Fn‘jk,i = (Mo Py — hj,mhk.nm)Hp,!Hm,i- (A4)
The antisymmetry of Iy, — Ty with respect to j and k is
now obvious since the first and the second term inside the
parentheses in Eq. (A.4) transform into each other on exchang-
ing j and k. This completes the proof.
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